Approximate Bayes Optimal Policy Search using Neural Networks
نویسندگان
چکیده
Bayesian Reinforcement Learning (BRL) agents aim to maximise the expected collected rewards obtained when interacting with an unknown Markov Decision Process (MDP) while using some prior knowledge. State-of-the-art BRL agents rely on frequent updates of the belief on the MDP, as new observations of the environment are made. This offers theoretical guarantees to converge to an optimum, but is computationally intractable, even on small-scale problems. In this paper, we present a method that circumvents this issue by training a parametric policy able to recommend an action directly from raw observations. Artificial Neural Networks (ANNs) are used to represent this policy, and are trained on the trajectories sampled from the prior. The trained model is then used online, and is able to act on the real MDP at a very low computational cost. Our new algorithm shows strong empirical performance, on a wide range of test problems, and is robust to inaccuracies of the prior distribution.
منابع مشابه
Bayes By Backprop Neural Networks for Dialogue Management
In dialogue management for statistical spoken dialogue systems, an agent learns a policy that maps a belief state to an action for the system to perform. Efficient exploration is key to successful dialogue policy estimation. Current deep reinforcement learning methods are very promising but rely on ε-greedy exploration, which is not as sample efficient as methods that use uncertainty estimates,...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملA Comparative Approximate Economic Behavior Analysis Of Support Vector Machines And Neural Networks Models
متن کامل
Expectation Backpropagation: Parameter-Free Training of Multilayer Neural Networks with Continuous or Discrete Weights
Multilayer Neural Networks (MNNs) are commonly trained using gradient descent-based methods, such as BackPropagation (BP). Inference in probabilistic graphical models is often done using variational Bayes methods, such as Expectation Propagation (EP). We show how an EP based approach can also be used to train deterministic MNNs. Specifically, we approximate the posterior of the weights given th...
متن کامل